

Edition 1.1 2025-10

INTERNATIONAL STANDARD

CONSOLIDATED VERSION

Determination of inrush current characteristics of lighting products

CONTENTS

FOREWORD	3
INTRODUCTION	5
1 Scope	6
2 Normative references	6
3 Terms and definitions	6
4 Symbols and abbreviated terms	7
5 General notes on measurements	8
6 Inrush current measurements	8
7 DC method (default method)	10
7.1 Measurement setup	10
7.2 Determining the value of the adjustment resistance	
7.2.1 Determining the value of R _{adj,1}	
7.2.2 Determining the value of $R_{adj,k}$	12
7.3 Measurement and calculation of the inrush current characteristics	13
7.3.1 Inrush current characteristics for a single DUT $(k = 1)$	
7.3.2 Inrush current characteristics for multiple DUTs	
8 Alternative AC method	
8.1 General	
8.2 Determining the value of the adjustment resistance	
·	
8.2.2 Determining the value of $R_{adj,k}$	
8.3 Measurement and calculation of the inrush current characteristics	
8.3.1 Measuring and calculating the inrush current for a single DUT	
9 Additional alternative methods	
Annex A (informative) Application of inrush current characteristics	
A.1 General	
A.2 Matching of DUT inrush current characteristics with switch or MCB	10
specifications circuit breaker characteristics	
A.3 Circuit breaker	
A.4 Switches	
Bibliography	21
	_
Figure 1 – Determination of the inrush current pulse durations t_{H10} and t_{H50}	9
Figure 2 – Measurement setup for the DC method (default method)	
Figure 3 – Switching unit	11
Figure 4 – Typical current rise and voltage decrease as a function of time after loading	
C ₁ (step c)) followed by turning on the switching unit (step e)) as described under step f)	12
Figure 5 – Determination of I_{max} (ignoring the current peaks for $t < 100 \ \mu s$)	
Figure 6 – Measurement setup for the AC method (alternative method)	
Figure 7 – Addition of m DUTs to the measurement circuit (both DC and AC methods)	17
Figure A.1 – Example of DUT inrush data (I_{peak} ; t_{Hx}) and circuit breaker	40
characteristics	19

Figure A.2 – Example to determine the number of controlgear that can be switched	
both by the electronic switches and HBES/BACS switches	20

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Determination of inrush current characteristics of lighting products

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

This consolidated version of the official IEC Standard and its amendment has been prepared for user convenience.

IEC 63129 edition 1.1 contains the first edition (2020-04) [documents 34/636/CDV and 34/679/RVC] and its amendment 1 (2025-10) [documents 34/1337/FDIS and 34/1392/RVD].

In this Redline version, a vertical line in the margin shows where the technical content is modified by amendment 1. Additions are in green text, deletions are in strikethrough red text. A separate Final version with all changes accepted is available in this publication.

International Standard IEC 63129 has been prepared by IEC technical committee 34: Lamps and related equipment.

The text of this International Standard is based on the following documents:

CDV	Report on voting
34/636/CDV	34/679/RVC

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document and its amendment will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

INTRODUCTION

Inrush current is the transient current drawn by an electrical device after it is switched on via an independent mains switch, the maximum amplitude of which is often much higher than in steady state during normal operation. Inrush current occurs because of charging capacitances during power up of a device.

Quantities such as peak inrush current and inrush current pulse duration are key parameters to characterize the inrush current, which are important to consider when selecting the switchgear of a lighting installation. This information is indispensable for electric installation planners, lighting designers and installers to be able to guarantee compatibility of a lighting system with other installation components like switches and overcurrent protection devices.

Careful selection of overcurrent protection devices, like circuit breakers, is important when dealing with high inrush currents. The overcurrent protection should react quickly to overload or short circuit but should not interrupt the circuit when an inrush current flows (i.e. false tripping). Another unwanted adverse effect that could occur when inrush current is not considered is welding of contacts of mechanical or electromechanical switches (manual or automatic).

The aim of this document is to determine the peak inrush current and the inrush current pulse duration of one or multiple lighting products of the same type.

This can serve as valuable information for installers in making the correct selection of components like switches and overcurrent protection devices in an installation or conversely for determination of the maximum number of lighting products of the same type that can be applied in an installation with switches and overcurrent protection devices (see Annex A).

The resulting functional compatibility between switchgear and lighting products in an installation is the main rationale for this document.

The rated voltage of lighting products which can be tested with this document is limited to 230 V AC only. Future inclusion of other voltages (for example 100 V AC, 120 V AC, 200 V AC, 277 V AC, 347 V AC) is not excluded.

1 Scope

This document describes a method, based on measurements combined with calculations, to determine specific characteristics of the inrush current of single and/or multiple lighting products of the same type. Lighting products include the following:

- light sources with integrated controlgear,
- controlgear,
- · luminaires.

The inrush current characteristics that are determined are

- the peak inrush current,
- · the inrush current pulse duration.

This document applies to lighting products connected to low-voltage 230 V AC 50/60~Hz electrical supply networks.

NOTE In Clause 6 it is stated that the methodology applies reference values for the reference (line) inductance and the reference (short circuit) peak current which reflect the typical situation in a 230 V AC installation.

2 Normative references

There are no normative references in this document.

CONTENTS

FOREW	ORD	3
INTROD	UCTION	5
1 Scc	pe	6
2 Nor	mative references	6
3 Ter	ms and definitions	6
4 Syn	nbols and abbreviated terms	7
5 Ger	neral notes on measurements	8
6 Inru	sh current measurements	8
7 DC	method (default method)	10
7.1	Measurement setup	10
7.2	Determining the value of the adjustment resistance	11
7.2	auj, i	
7.2	2 Determining the value of $R_{adj,k}$	12
7.3	Measurement and calculation of the inrush current characteristics	
7.3	9 - (, ,	
7.3	1	
	ernative AC method	
8.1 8.2	General Determining the value of the adjustment resistance	
8.2	•	
8.2	•	
	auj,n	
8.3 8.3	Measurement and calculation of the inrush current characteristics 1 Measuring and calculating the inrush current for a single DUT	
8.3		
	litional alternative methods	
	(informative) Application of inrush current characteristics	
A.1	General	
A.2	Matching of DUT inrush current characteristics with switch or circuit breaker characteristics	
A.3	Circuit breaker	
A.4	Switches	19
Bibliogra	aphy	21
T: 4		0
	– Determination of the inrush current pulse durations $t_{\rm H10}$ and $t_{\rm H50}$	
_	Measurement setup for the DC method (default method)	
_	- Switching unit	11
C ₁ (step	 Typical current rise and voltage decrease as a function of time after loading c)) followed by turning on the switching unit (step e)) as described under 	40
	Determination of I (ignoring the current peaks for 4 < 100 us)	
	– Determination of I_{max} (ignoring the current peaks for $t < 100 \mu s$)	
-	- Measurement setup for the AC method (alternative method)	
_	- Addition of m DUTs to the measurement circuit (both DC and AC methods)	17
	1.1 – Example of DUT inrush data (I_{peak} ; t_{Hx}) and circuit breaker	
characte	ristics	19

Figure A.2 – Example to determine the number of controlgear that can be switched	
both by the electronic switches and HBES/BACS switches	20

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Determination of inrush current characteristics of lighting products

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

This consolidated version of the official IEC Standard and its amendment has been prepared for user convenience.

IEC 63129 edition 1.1 contains the first edition (2020-04) [documents 34/636/CDV and 34/679/RVC] and its amendment 1 (2025-10) [documents 34/1337/FDIS and 34/1392/RVD].

This Final version does not show where the technical content is modified by amendment 1. A separate Redline version with all changes highlighted is available in this publication.

International Standard IEC 63129 has been prepared by IEC technical committee 34: Lamps and related equipment.

The text of this International Standard is based on the following documents:

CDV	Report on voting
34/636/CDV	34/679/RVC

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document and its amendment will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

INTRODUCTION

Inrush current is the transient current drawn by an electrical device after it is switched on via an independent mains switch, the maximum amplitude of which is often much higher than in steady state during normal operation. Inrush current occurs because of charging capacitances during power up of a device.

Quantities such as peak inrush current and inrush current pulse duration are key parameters to characterize the inrush current, which are important to consider when selecting the switchgear of a lighting installation. This information is indispensable for electric installation planners, lighting designers and installers to be able to guarantee compatibility of a lighting system with other installation components like switches and overcurrent protection devices.

Careful selection of overcurrent protection devices, like circuit breakers, is important when dealing with high inrush currents. The overcurrent protection should react quickly to overload or short circuit but should not interrupt the circuit when an inrush current flows (i.e. false tripping). Another unwanted adverse effect that could occur when inrush current is not considered is welding of contacts of mechanical or electromechanical switches (manual or automatic).

The aim of this document is to determine the peak inrush current and the inrush current pulse duration of one or multiple lighting products of the same type.

This can serve as valuable information for installers in making the correct selection of components like switches and overcurrent protection devices in an installation or conversely for determination of the maximum number of lighting products of the same type that can be applied in an installation with switches and overcurrent protection devices (see Annex A).

The resulting functional compatibility between switchgear and lighting products in an installation is the main rationale for this document.

The rated voltage of lighting products which can be tested with this document is limited to 230 V AC only. Future inclusion of other voltages (for example 100 V AC, 120 V AC, 200 V AC, 277 V AC, 347 V AC) is not excluded.

1 Scope

This document describes a method, based on measurements combined with calculations, to determine specific characteristics of the inrush current of single and/or multiple lighting products of the same type. Lighting products include the following:

- light sources with integrated controlgear,
- controlgear,
- luminaires.

The inrush current characteristics that are determined are

- · the peak inrush current,
- · the inrush current pulse duration.

This document applies to lighting products connected to low-voltage 230 V AC 50/60~Hz electrical supply networks.

NOTE In Clause 6 it is stated that the methodology applies reference values for the reference (line) inductance and the reference (short circuit) peak current which reflect the typical situation in a 230 V AC installation.

2 Normative references

There are no normative references in this document.